פריצת דרך מחקרית של פרופ' ריכטר, ראש המעבדה לאלקטרוניקה ביו-מולקולרית וחומרים מתקדמים

מחקר
פריצת דרך מחקרית של פרופ' ריכטר, ראש המעבדה לאלקטרוניקה ביו-מולקולרית וחומרים מתקדמים
אמנם המדוזות עזבו כבר את חופי ישראל אבל את הסגולות שלהן משאירות במעבדות הפקולטה להנדסה אוניברסיטת תל אביב.
פרופ' ריכטר, ראש המעבדה לאלקטרוניקה ביו-מולקולרית וחומרים מתקדמים במחלקה למדע והנדסה של חומרים והמרכז לננוטכנולוגיה, והדוקטורנט רומן נודלמן מסבירים בראיון להילה אלרואי מהתכנית סטטוסקופ של ערוץ 13 על פריצת הדרך שיכולה להועיל לחולי סכרת הסובלים מפצעים כרונים או זיהומיים, תחבושת העשויה מסיבי מדוזות. התפקיד העיקרי של החבישה החדשה הוא לקחת את החלבונים שמפרקים את הקולגן ולמשוך אותם לתוך התחבושת, כך שהגוף יוכל להמשיך בתהליך הריפוי
לראיון המלא הקליקו
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ד"ר גיל מרום פיתח סימולציות ממוחשבות המאפשרות להבין טוב יותר את הביומכניקה של הטיפול בחולי לב ולהעריך את הסיכויים לסיבוכים.
מחלות לב וכלי דם הן גורם המוות המוביל בעולם המפותח המהוות כמעט 30% מכלל מקרי המוות מדי שנה. בלב קיימים ארבעה מסתמים האחראים לזרימה חד-כיוונית של הדם בתוך חללי הלב ומהם לכל איברי הגוף. כל אחד מהמסתמים אחראי על הכוונת הדם בין מדורי הלב השונים בכיוון אחד, בעת כיווץ העליות והחדרים, כדי שיגיע אל העורקים הגדולים ומשם לריאות ולשאר הגוף. לעיתים המחלות במסתמים נגרמות בשל שינויים במבנה הרקמות שלהם ובמרכיביהם, שמובילים להפרעה במעבר הדם ללב ולשאר איברי הגוף. ד"ר גיל מרום, מבית הספר להנדסה מכנית של הפקולטה להנדסה אוניברסיטת תל אביב עושה שימוש במודלים חישוביים שפיתח כדי לחזות את הפיזיקה של מערכת הלב וכלי הדם (המערכת הקרדיווסקולרית) וכך לשפר את הטיפול בחולה לב.
יתרונות המודלים החישוביים במתן הטיפול הנכון לחולה
מורכבות מערכת הלב, המשלבת סיבוכיות פיזיקלית בסדרי גודל שונים, היא סיבה מרכזית לצורך בשימוש במודלים חישוביים הנקראים גם סימולציות. פעולת שאיבת הדם בלב נגרמת על ידי התכווצות שריר הלב, כיוון זרימת הדם נקבע על ידי מסתמי הלב, בעוד התכווצות השריר נשלטת על ידי מערכת ההולכה החשמלית של הלב. מורכבות זו יחד עם המגבלות של ניסויים קליניים וניסויי מעבדה מסבירות בבירור את יתרונות המודלים החישוביים. סימולציות ממוחשבות מאפשרות לערוך ניסויים וירטואליים ולבחון אפשרויות שונות לטיפול באותו חולה. היכולת להשוות מקרים זהים, בניגוד להשוואת מקרים ממספר חולים שונים, מאפשרת ללמוד את ההשפעה של פרמטר מסוים על התפקוד, תוך בידוד השפעה זו מגורמים אחרים, וכך למצוא מגמות המאפיינות את התופעה. נוסף להשלכות הרפואיות החשובות של מחקר זה, המחקר מרתק גם מבחינה הנדסית. בניגוד למקרים הנדסיים "רגילים" בהם מאפייני הבעיה ידועים, כמו גאומטרית הגוף ותכונות החומר ממנו הוא מורכב, במקרים הביולוגים יש שונות גדולה במחלות ובאוכלוסייה ולמעשה המודלים מתבססים פעמים רבות על תהליך הנדסה הפוכה והנחות הנדסיות שונות.
המכניקה של מחלות מסתמי לב והטיפול בהן
מסתמי הלב הם שסתומים הבנויים מעלים גמישים. כאשר פעילותם תקינה הם מאפשרים זרימה חד כיוונית ומונעים זרימה חוזרת. בניגוד לשסתומים מכניים בשימושים הנדסיים, העלים הגמישים צריכים לעבור עיוותים גדולים בכל מחזור לב, לעמוד בלחצים גבוהים ביחס לחוזקם המכני, ולעבוד במשך הרבה מאוד מחזורי לב (כמחזור לשנייה במשך כל שנות החיים). מחלות מסתמי הלב הנפוצות ביותר הן היצרות של המסתם האאורטלי (אבי העורקים) ודליפה של המסתם המיטרלי. טיפולים אפשריים הם תיקונים או החלפת המסתם בניתוחי לב פתוח ובשנים האחרונות נוספה גם אפשרות זעיר פולשנית של השתלת מסתם בצנתור. אך לכל סוגי הטיפולים הללו ישנם סיבוכים אפשריים שכמובן עדיף להימנע מהם.
המודלים החישוביים שאנחנו מפתחים מאפשרים להבין טוב יותר את הביומכניקה של הטיפול ולהעריך את הסיכויים לסיבוכים שונים. לדוגמה, תוצאות המודלים הקודמים שלנו עוזרות למנתחים לבחור את הקוטר הרצוי שאליו יש להקטין את קוטר המסתם החולה על מנת להביא אותו לתפקוד תקין. גם במסתמים המושתלים בצנתור לטיפול בהיצרות המסתם אבי העורקים אנחנו יכולים, על פי תוצאות הסימולציות, להמליץ על גודל המסתם המתאים, מיקום ההשתלה האופטימלי, ודרכי ההשתלה כדי להפחית את הסיכוי לדליפות, תזוזה של המסתם המושתל בגלל התכווצות הלב, ופגיעה בהולכת החשמל בלב בגלל לחצי מגע שהשתל מפעיל על הלב. אותן מסקנות יכולות לעזור גם בתכנון מסתמים תותבים חדשים עם תפקוד טוב יותר וסיכוי מופחת להתפתחות הסיבוכים לאחר ההשתלה.
במחקרים שנערכים עכשיו בקבוצה של ד"ר מרום, מנסים להבין את מנגנוני קרישת הדם על עלי המסתמים המושתלים. המודלים בהם אנו נעזרים בנושא זה, מבוססים על הידע שקרישת הדם נגרמת בגלל מאפיינים מכניים של זרימת הדם, כגון חשיפת טסיות הדם למאמצי גזירה, משך זמן החשיפה, או משך הזמן שהטסית נעצרת במקום בגלל מערבולות. כמו כן, מאפייני הזרימה קובעים גם את סוג קרישי הדם שעלולים להיווצר, תסחיפים או דווקא קרישה על עלי המסתם אשר גורמים להם להתעבות ולהפסיק לתפקד. שיטות דומות עוזרות לנו להבין טוב יותר את אי-ספיקת, או דליפת, המסתם המיטרלי עם מטרה שידע זה יעזור לתת מענה למרבית החולים שכיום אינם מקבלים טיפול בגלל סיכון ניתוחי גבוה. "אחת הסיבות העיקריות שעדיין לא הצליחו לפתח פתרון התערבותי לחולים אלו היא שלמסתם זה יש אנטומיה ופעולה מכנית מסובכים הרבה יותר מאשר במסתם אבי העורקים. הבנה טובה יותר של תפקודו תעזור לשפר טיפולים קיימים ולפתח שתלים חדשים שיצליחו לעמוד בעומסים המכניים הפועלים במסתם זה ולשפר את איכות חיי החולים" מסביר ד"ר מרום.
דוגמא למודלים של פעילות הלב במצב מכווץ ורפוי (צד ימין) ושל זרימת הדם דרך מסתם תותב (צד שמאל)
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ד"ר גילי ביסקר יחד עם חוקרים מאוניברסיטת מישיגן ואוניברסיטת קומפלוטנסה פרסמו את מחקרם ב Nature Communications המסביר כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים
ד"ר גילי ביסקר מהמחלקה להנדסה ביו רפואית ומנהלת המעבדה לאופטיקה, ננו-טכנולוגיה, וביופיזיקה, הצטרפה לפקולטה להנדסה באוניברסיטת תל אביב אחרי 6 שנים באוניברסיטה היוקרתית ואחת הטובות בעולם - MIT שם עבדה במעבדה ניסיונית במחלקה להנדסה כימית ופתחה ננו-גלאים אופטיים המבוססים על ננו-צינוריות מפחמן וגילתה ננו-גלאים לחלבונים פיברינוגן ואינסולין. לאחר מכן עסקה במחקר תיאורטי במחלקה לפיזיקה ב- MIT שם עבדה על תהליכי הרכבה עצמית מחוץ לשיווי משקל, ובהסקת מסקנות לגבי מערכות מורכבות מחוץ לשיווי משקל מתוך מידע חלקי.
פיתוח שיטות לאבחון וטיפול חדשות
"המעבדה בפן הניסיוני, מתמקדת בפיתוח כלים ננו-טכנולוגיים שיאפשרו לעקוב אחרי תהליכים מולקולרים, בשאיפה להבין את הדינמיקה של אותם תהליכים. כלים אלו מבוססים על ננו-חלקיקים הפולטים פלורסנציה בתחום האינפרא אדום, ויכולים לגלות שינויים בסביבה הקרובה שלהם או ספיחה של מולקולות על פני השטח שלהם. בעזרת מעקב אחרי התכונות האופטיות של הננו-חלקיקים הללו במערכות ביולוגיות אפשר ללמוד עליהן ולקבל מידע חדש על תהליכים מיקרוסקופיים שאחראיים על ההתנהגות המקרוסקופית שלהן. כך מסבירה ד"ר ביסקר.
בין השאר, ניתן להשתמש באותם ננו-חלקיקים כסנסורים למולקולות ביולוגיות עבור אפליקציות ביורפואיות על מנת לפתח שיטות אבחון וטיפול חדשות. למשל, במעבדה מפתחת ד"ר ביסקר ננו-סנסורים לחלבונים וביו-סמנים של מחלות כגון סרטן וסכרת, לצורך גילוי מוקדם, ניטור התקדמות המחלה, ובדיקה של יעילות טיפול.
שבירה של סימטריית ההיפוך-בזמן
המעבדה אף מתמקדת בפן התיאורטי בו ד"ר ביסקר מפתחת כלים אנליטיים ונומריים לזיהוי של חוסר שיווי-משקל תרמודינאמי על מנת להבין תהליכים מולקולרים שאחראים לקיומם של חיים. למשל, תא חייב להשקיע אנרגיה על מנת להעביר מטען מקצה אחד של התא לקצהו השני, או על מנת לשנות את מבנה השלד שלו לטובת תנועה במרחב. אלו הן דוגמאות לתהליכים מחוץ לשיווי משקל החיוניים לתפקוד תקין של התא.
כל המערכות החיות נמצאות רחוק משיווי משקל, שמתבטא גם בשבירה של סימטריית ההיפוך-בזמן. כאשר יש במערכת תנועה בכיוון מועדף, או זרם הנראה לעין, קל לזהות שהמערכת אינה בשיווי משקל. לעומת זאת, בהעדר זרם זיהוי הכוחות הפנימיים או החיצוניים שדוחפים את המערכת מחוץ לשיווי-משקל נהיה מאתגר. במקרה זה, ד״ר ביסקר ומשתפי פעולה מאוניברסיטת קומפלוטנסה של מדריד ומאוניברסיטת מישיגן בארה״ב, הדגימו כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים.
המחקר, שהתפרסם לאחרונה בעיתון Nature Communications, מראה אין ניתן להשתמש בשיערוך המבוסס על פילוג ההסתברות של זמני המתנה כדי לזהות חוסר שיווי משקל. בעזרת השוואת ההתפלגויות של תזמון התהליכים הנצפים במערכת לבין ההתפלגויות של תזמון התהליכים ההפוכים בזמן, ניתן לכמת את אותה שבירת סימטריה ובכך לתת חסם תחתון לכמה רחוקה המערכת משיווי משקל. מדד זה יכול לעזור להבנה בסיסית של מערכות חיות, וללמד אותנו על יעילות של תהליכים מולקולרים, או על המחיר התרמודינמי ההכרחי לדיוק שלהם. ההבנה הזו יכולה גם לעזור לפיתוח מערכות סינטטיות השואבות השראה ממערכות ביולוגיות.
חלקיק נע בקו חד מימדי, עם הסתברות שווה לקפוץ למעלה או למטה. בממוצע, אין זרם במערכת, אך מתוך פרקי הזמן בהם החלקיק מבלה במצבים השונים, לפני קפיצה למעלה לעומת לפני קפיצה למטה, ניתן להסיק שבירת סימטריה להיפוך בזמן.
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
החוקרות והחוקרים מבית הספר להנדסה מכנית עוקבים אחר בעלי החיים והצמחים שחיים בתנאי קיצון, לומדים על התכונות הייחודיות שהם סיגלו לניצול חכם של מים, ומפתחים דרכים שיעזרו גם לנו ואפילו למחשבים שלנו לשרוד בחום שעוד מצפה לנו בהמשך.
החוקרת ד"ר בת אל פנחסיק מפתחת מערכות ביומימטיות, המחקות פתרונות של חיות מדבריות לבעיית המים. במעבדה שלה Biomimetic Mechanical Systems and Interfaces מתמקדמים בביומימטיקה. כלומר, לומדים מאופן פעילותן של חיות בטבע, למשל חרקים וזוחלים, על מנת למצוא פתרון לבעיות אנושיות. את הפתרונות הטבעיים מתרגמים לשימוש בחומרים חכמים שהופקו במעבדה, ומנגנונים פיסיקליים והנדסיים, למשל רובוטים, שמחקים את פעולות החרקים והזוחלים.
החוקר ד"ר הרמן האושטיין המתמקד במעבדה שלו MyFET Lab בתחומים של מעבר חום והזרימה בסקאלות מיקרו, מנגנוני קירור שקוטרם הוא בסדר גודל של עובי שערה בודדת. כיום אחד הגורמים המגבילים את תעשיית האלקטרוניקה היא צפיפות הרכיבים שדורשים הספקת חשמל. מצד אחד המהנדסים במעבדה רוצים להצליח להכניס כמה שיותר רכיבים בשטח קטן מאוד, מה שגורם לרכיב להתחמם מאוד, ומצד שני – למצוא דרכים להוציא מהם את החום באופן הכי יעיל. על מנת לקרר את הרכיבים יש צורך באספקת זורם קר, שיסלק את החום מתוך מערכים בסדר הגודל של מיקרונים (עובי שערה הוא 100-50 מיקרון). המחקר של ד"ר האושטיין וצוותו תורם לתכנון מערכות אלקטרוניות מורכבות כגון מחשבים, מערכות נשק ומכשור רפואי.
הכנסו לקישור לכתבה המלאה: https://www.tau.ac.il/article/using-every-drop
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
פיתוח פורץ דרך של סטודנטים לתואר ראשון מבית הספר להנדסה מכנית מציעים טכנולוגייה חלופית ובטוחה לחילוץ פצועים משטח קרב
העימות האחרון ברצועת עזה אמנם נרגע לעת עתה, אולם בצה"ל מודעים לכך שסבב הלחימה הבא כבר נמצא בפתח. הסטודנטים שלנו לא עוצרים לרגע וחושבים רק קדימה בפיתוח פתרון מהפכני בכל הקשור לפנוי פצועים בשדה הקרב.
דור פראג', תום סלומון וגיא יזרעאלי הם סטודנטים לתואר ראשון מבית הספר להנדסה מכנית בפקולטה להנדסה אוניברסיטת תל אביב והם אחראים על הפיתוח פורץ הדרך כחלק מפרויקט הגמר שלהם, בליווי של רוני שפיר ודני ברקו.
עבור דור, תום וגיא הפרויקט הזה היווה בחירה טבעית לאור תפקידיהם בצבא בסדיר ובשרות המילואים. גיא יזרעאלי משרת במילואים כקצין תומך לחימה ביחידת פלה"ק (פלוגת החייאה קדמית), תום סלומון משרת במילואים כלוחם וחובש ביחידת עורב צנחנים ודור פראג' משרת במילואים ביחידת המודיעין של פיקוד דרום אשר בין היתר מנהלת את פינוי הנפגעים בגזרה. "דיברנו ביננו על הצורך בחילוץ פצוע מן הסוג הזה אשר יתבצע ללא סיכון חיילים נוספים בשטח" כך מסביר תום. "לאור השירות הצבאי נחשפנו לשיטות הפינוי השונות בצה"ל (רכוב, מוסק וימי) וזיהינו את הבעיה אותה ניסינו לפתור".
רחפן המאפשר פינוי מהיר
שיטות פינוי הלוחמים בשדה הקרב הנהוגות כיום טומנות בחובן סיכון רב, הן לצוות המחלץ והן למחולץ עצמו. כיום אין דרך חילוץ שאינה דורשת הימצאות המחלץ בשטח, ויתרה מכך, מלבד חילוץ מוסק (שהינו יקר ומסוכן), אין אפשרות לחילוץ אווירי.
במסגרת פרויקט הגמר לתואר ראשון, הציעו הסטודנטים שיטת חילוץ שאינה דורשת הימצאות המחלץ בשטח, זאת באמצעות רחפן המאפשר פינוי מהיר, זול, יעיל ובטיחותי - הן למפעיל הרחפן והן לחייל הפצוע. בעת הגעת הרחפן לנקודת האיסוף, המערכת מסוגלת לבצע עיגון והרמת הפצוע באופן עצמאי ללא גורם אנושי הנמצא בנקודת הפינוי.
על הרחפן לשאת במשקל מקסימלי של 120 ק"ג, מהירות הפינוי תהא עד 50 קמ"ש בגובה של כ-2 מטרים, כאשר הפינוי יתבצע למרחק קצר (כ- 200 מטר). פינוי הפצוע יעשה באמצעות רתמה ייעודית או אבזם ייעודי המחובר לאפוד שלו כאשר הוא שוכב על הגב, על הצד או על הבטן.
במהלך ביצוע סקר של שוק הרחפנים לנשיאת משקלים גדולים, הגיעו הסטודנטים למסקנה כי הרחפן eVTOL CAV מבית Boeing הינו הרחפן המתאים ביותר לדרישות הפרויקט. במסגרת הפרויקט סקרו הסטודנטים שלוש חלופות אפשריות שעונות על דרישות הפרויקט ובחרו בחלופת כננת עם כבל המובל באמצעות שרוול טלסקופי, שבקצהו מנגנון נעילה מכאני העושה שימוש במגנט לצורך מיקום טבעת הנעילה בסוגר.
בוצעו אנליזות חוזק להוכחת יכולת ההרמה של המנגנון חיבור והתקבל מקדם ביטחון 15:
3. התממשקות מנגנון הנעילה 2. הרחפן מעל נקודת פינוי הפצוע 1. הרחפן נישא על גבי רכב צבאי
הפנים מאחורי הפיתוח - מימין לשמאל: דור פראג', גיא יזרעאלי ותום סלומון
מחקר
פרופ' טל אלנבוגן יחד עם סטודנטים מקבוצת המחקר שלו פיתחו טכנולוגיה חדשה ליצירה ושליטה בקרינת טרה-הרץ בעזרת מטא-חומרים
החודש התפרסם מאמר פורץ דרך של פרופ' טל אלנבוגן, מהמחלקה לאלקטרוניקה פיזיקלית בבית הספר להנדסת חשמל וראש המעבדה לננו אלקטרואופטיקה, יחד עם חוקרים נוספים מאוניברסיטת תל אביב ואוניברסיטת בראון בארה"ב, בתחום של יצירה ושליטה בקרינת טרה-הרץ בעזרת מטא-חומרים בעיתון היוקרתי Nature Communications.
גלי טרה-הרץ
גל אלקטרומגנטי הוא למעשה "הפרעה" של שדה חשמלי ומגנטי בעלת מחזוריות ומבנה גלי המתפשטת במרחב במהירות האור. גלים אלקטרומגנטיים, כמו גלי רדיו, מגיעים בתחום רחב של תדירויות המכונה הספקטרום האלקטרומגנטי (כלומר אוסף כל הגלים האלקטרומגנטיים). ספקטרום זה משתרע מגלי הרדיו בעלי תדירויות נמוכות ועד לגלי גאמה (קרינה בתדירות גבוהה מזו של X-ray). האור הנראה, התדירויות אותן בני האדם יכולים לראות, הוא רק חלק קטן מכל התחום של גלים אלקטרומגנטיים.
כיום קיימים אמצעים מדעיים וטכנולוגיים כגון אנטנות, מנורות, לייזרים וגלאים המאפשרים להפיק ולקלוט גלים על פני כמעט כל תחומי הספקטרום האלקטרומגנטי. אמצעים אלו מאפשרים אינספור של ישומים כמעט בכל תחומי המדע והטכנולוגיה הקיימים מתקשורת, דימות, זיהוי עצמים עד לאבחון רפואי. לעומת זאת תחום גלי הטרה-הרץ, המתנדנדים בתדירויות הנמצאות בין גלי מיקרו לאור האינפרא אדום, נותר באפלה. הסיבה היא מכיוון שתדירויות אלו מהירות מידי ליצירה וקליטה בעזרת מעגלים חשמליים ובעלות אנרגיות נמוכות מידי ליצירה וקליטה באמצעים המשמשים ליצירה וקליטה של אור. אמנם קיימים מספר אמצעים ליצירה ולקליטה של קרינת טרה-הרץ, אך אלו מוגבלים ביכולת השליטה בתדירויות ובעוצמות שלהם, או מצריכים תנאי הפעלה קיצוניים כגון טמפרטורות נמוכות מאוד. בנוסף, קיימים רק כלים מעטים לעיצוב קרני טרה-הרץ כמו עדשות או מקטבים. למרות הקושי בעבודה עם קרינת טרה-הרץ, מאמצים רבים מושקעים בפיתוח רכיבים יעילים לתחום תדירויות זה עקב מגוון של שימושים חשובים של קרינת טרה-הרץ. מערכות המשתמשות בקרינת טרה-הרץ יפתחו את הדלת לזיהוי ואף שליטה במולקולות, זיהוי של תרופות אמת או תרופות מזויפות, דימות רפואי בקרינה שאינה מייננת, גילוי חומרי נפץ, חומרי ריסוס, יצירת תקשורת נתונים מהירה ועוד מגוון רחב של יישומים חשובים.
יצירה עיצוב ושליטה בקרני טרה-הרץ על ידי מטא-משטחים אופטיים
מחקר חדש שבוצע על ידי הסטודנטים שי קרן צור ומאי טל מהקבוצה של פרופ' טל אלנבוגן מבית הספר להנדסת חשמל, בשיתוף פעולה עם ד"ר שר-לי פליישר מבית ספר לכימיה באוניברסיטת תל אביב ופרופ' דניאל מיטלמן מאוניברסיטת בראון שבארה"ב, מראה כיצד ניתן להשתמש במשטחים דקים (בעובי עשרות ננומטרים) המכונים מטא-משטחים אופטיים, ליצירה יעילה של קרינה בתחום הטרה-הרץ ולעיצוב ושליטה בקרינה.
המשטחים בנויים מאלמנטים בסקאלה ננומטרית, שיוצרו במרכז הננו של אוניברסיטת תל אביב. כל אלמנט כזה משמש כננואנטנה הקולטת אור מלייזר בתחום האיפרא-אדום בעל פולסים קצרים באורך של פמטו-שניות ומייצרת ביעילות יחסית פולסים של קרינת טרה-הרץ. על ידי שליטה באנטנות על גבי המטא-משטח החוקרים מראים שניתן לעצב את צורתו המרחבית והזמנית של פולס הטרה-הרץ שנוצר בצורה שלא ניתנת להשגה באמצעים הקיימים עד כה. היכולת הזו פותחת פתח למגוון רחב של יישומים חדשים לקרינת טרה-הרץ.
החוקרים מאמינים שבעתיד יהיה ניתן לשלב מקורות חדשים כאלו במערכות גילוי ואפיון חומרים, רכיבים, תרופות ובמערכות דימות טרה-הרץ רפואיים.
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ד"ר בת-אל פנחסיק, מביה"ס להנדסה מכנית, הפקולטה להנדסה באוניברסיטת תל אביב, לומדת מחרקים וזוחלים איך לפתור בעיות של איסוף והובלת מים, הדבקה הפיכה ותנועה בתנאים מאתגרים.
במעבדה של ד"ר פנחסיק Biomimetic Mechanical Systems and Interfaces מתמקדמים בביומימטיקה. כלומר, לומדים מאופן פעילותן של חיות בטבע, למשל חרקים וזוחלים, על מנת למצוא פתרון לבעיות אנושיות. את הפתרונות הטבעיים מתרגמים לשימוש בחומרים חכמים שהופקו במעבדה, ומנגנונים פיסיקליים והנדסיים, למשל רובוטים, שמחקים את פעולות החרקים והזוחלים
לקבל השראה מהטבע לפתרון בעיות אנושיות
חיות בטבע מתמודדות עם בעיות קיומיות רבות הנובעות מאתגרים סביבתיים כגון: כיצד לשרוד בתנאים מדבריים? איך ניתן ללכת מתחת למים באיזורים רטובים? כיצד להעביר נוזלים ממקום למקום בצורה יעילה? כיצד להישאר נקיים בסביבה בוצית? בטבע ניתן למצוא פתרונות חכמים לבעיות אלו. פתרונות אלו התפתחו לאורך האבולוציה והתייעלו כך שכבר בגדלים קטנים מאוד, ננומטריים, ניתן לראות שימוש נפלא בצורה ובחומר, אשר משפיעים על התכונות המאקרוסקופיות.
דוגמא מרתקת היא של חיפושית שחיה במדבר נמיב (מדבר באפריקה הדרומית) אשר משתמשת בטל הבוקר על מנת להרוות את צימאונה. הגב שלה מכוסה במבנה מיוחד של בליטות מיקרומטריות שמושכות אליהן מים ומרכזות אותם בטיפות מסודרות. הטיפות הללו גדלות, מתחברות אחת לשניה ובשלב מסויים מתגלגלות אל פה החיפושית. למעשה, החיפושית אינה עושה שום פעולה אקטיבית- איסוף המים מתרחש בגלל תכונות פני השטח שעל גבה, עם קצת עזרה של הרוח. לטאות מסוימות אף משתמשות במנגנונים מתוחכמים על מנת לשנע מים מגבן אל הפה. הן מכוסות בקשקשים היוצרים רשת דו-מימדית על גבן. הרשת היא למעשה דיודה לנוזלים - מאפשרת הולכת המים בכיוון אחד - היישר אל תוך הפה.
לחקות את הטבע
"במעבדה החדשה שלנו, אנו מבקשים להבין את המנגנונים מאחורי הפתרונות החכמים מהטבע: מה הם החומרים המשמשים את החרקים והלטאות? מה מיוחד בפני השטח שלהן, שמאפשר פתרונות יעילים לאתגרים סביבתיים? אנחנו שואפים ללמוד מחיות אלו על מנת לפתח חומרים חדשים ומערכות שמחקות את הפעולות הללו בהצלחה. באופן אידיאלי - אנו שואפים לא רק לחקות אלא גם להתעלות ולהרחיב מעבר למה שהטבע מציג לנו. מאחר והטבע מורכב, הדרך להבין אותו חייבת להיות רב-תחומית. מסיבה זו הצוות שלנו הוא רב תחומי ומורכב ממהנדסים מכניים, פיסיקאים, כימאים ומהנדסי חומרים" מסבירה ד"ר פנחסיק.
בתמונה: תקריב של רגל חיפושית רגע לפני המגע עם טיפת מים.
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ד״ר דן ימין מהפקולטה להנדסה באוניברסיטת תל אביב, מפתח מערכת שיודעת לזהות מראש את הפוטנציאל הויראלי של ציוץ בטוויטר, ולא פחות חשוב: לנטרל אותו.
במעבדה לחקר ויראליות בראשותו של ד"ר דן ימין, LEMA, עוסקים בעיקר באפליקציות רפואיות הנוגעות להתפשטות מחלות מידבקות.
ד"ר ימין מצא במחקריו כי לא רק מחלות יכולות להיות מידבקות, אלא גם התפשטות של תופעות עם פוטנציאל ויראלי לרבות שיווק ויראלי, וירוסי מחשב, ואפילו התנהגויות עם היבטים חברתיים מידבקים.
שנאה זה מידבק
"בזמן שהותי באוניברסיטת ייל במסגרת הפוסט דוקטוקט, נחרדתי לגלות שאנחנו מפסידים באופן ניכר במערך ההסברה בקמפוסים בארה"ב. נתקלתי לעיתים תכופות בדיונים לא מאוזנים בלשון המעטה, חד גוניים, שטופי שנאה אודות ישראל, אפילו בקרב גורמים בקהילה היהודית. באחד הימים רוסס גרפיטי של צלב קרס במרכז היהודי של האוניברסיטה. לצערי, לאיש לא היה אכפת. ניסיתי להבין כיצד יתכן שזה כל כך לא פופולרי לאהוד את ישראל. הבנתי, בדיעבד שהתעמולה המסיבית כנגד ישראל, ובפרט ברשתות החברתיות נותנת את אותותיה. הבנתי, ששנאה זה מידבק" מספר ד"ר ימין.
סיכול ציוצים ויראלים
בשנים האחרונות אנו עדים לעלייה ניכרת בציוצים אנטי ישראליים ע"י ארגונים כמו BDS ומשתמשים פרטיים. מטרת העל של המחקר הנה יצירת מערכת "כיפת ברזל של ציוצים". בדומה למערכת כיפת ברזל, ברור לכול כי לא ניתן ולא צריך לסכל כל ציוץ. מידי יום, מופצים עשרות אלפי ציוצים הקשורים לישראל. רק חלק קטן מהם יהיה ויראלי ויתפשט ברשת החברתית.
במסגרת עבודת התיזה של יוגב מטלון ואופיר מגדסי ובשיתוף עם אדם אלמוזלינו מבוסטון, ארה"ב, פיתחו החוקרים סט של אלגוריתמים שבאמצעותם הצליחו לחזות איזה ציוץ פרו ישראלי או אנטי ישראלי יהיה ויראלי. בשלב השני של המחקר הם ירצו לנסות ולהציע מכניזם לציוץ תגובה אפקטיבית. מסביר דן "כלומר, נרצה להציע מכניזם לתגובה שתמזער את ההשפעה של ציוץ אנטי ישראלי ותגביר את ההשפעה של ציוץ פרו ישראלי. שאיפתנו היא לתרום מערכת כזו למרכז לעניינים אסטרטגים או לארגון פרו ישראל כדוגמת stand with us שאיתם יצרנו קשר לאחרונה. ברור שישנם לא מעט אתגרים בפרויקט שכזה".
לזהות ציוץ רלוונטי
הרשת החברתית בנויה מקבוצות הומוגניות. כלומר, ברור שרוב חברי דומים לי, ולכן ציוץ פרו ישראלי שיופץ במהרה בין חברי יהיה בבחינת "שכנוע המשוכנעים" וככזה, לא נרצה להגדירו כויראלי. בנוסף, גם אם איתרנו ציוץ אנטי ישראלי עם פוטנציאל להיות ויראלי, ייתכן שהתגובה שלנו כנגדו עלולה לשמש כחרב פיפיות ודווקא להגביר את תפוצתו המזיקה ברשת. אתגר נוסף הוא זיהוי ציוצים רלוונטיים מבין מאות מיליוני ציוצים המופצים מידי יום. לדוגמה, ראשי התיבות SJP משמשים כקיצור של Students for Justice in Palestine, אבל גם של Sarah Jessica Parker.
עולם הרשתות החברתיות הוא חדש ומתחדש ורב בו הנסתר על הידוע. בכוחו של מחקר כזה לשפר את הבנתנו אודות המבנה וההתהוות של רשת חברתית, את גורמי ההשפעה ברשת, השפעה של התפשטות רגשות ברשת ועוד מגוון רחב של שאלות.
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
ניר דואר פיתח מודלים ומדדים שיאפשרו לכמת בצורה אובייקטיבית את "אחריות" האדם המפעיל או מפקח על מערכות אוטומטיות מתקדמות
קביעת מידת האחריות האנושית באינטראקציה אנושית עם מערכות אוטומטיות מהווה כיום נושא "חם" וחשוב ביותר. זאת לאור ההתפתחויות במכוניות אוטונומיות, מערכות מתקדמות ברפואה, כלי נשק צבאיים אוטונומיים, ויישומי AI באופן כללי.
מערכות אוטומציה מתקדמות
אוטומציה מתקדמת עוסקת באיסוף מידע והערכה, בקבלת החלטות ואף ביישום פעולות נבחרות. בעבר האוטומציה רק החליפה (באופן מלא או חלקי) פעולות אשר התבצעו על ידי האדם, אך כיום היא מאפשרת יכולות ניתוח ויישום פעולות החורגים מגבול היכולת האנושית.
אולם, בעת אינטראקציה עם מערכות אוטומציה מתקדמות, הופכת מידת האחריות האנושית ללא ברורה ונוצר פער ביכולת להגדיר ולכמת מהי בעצם האחריות התורמת של האדם לתוצאות הנגרמות. הבנת מידת אחריות האנוש חשובה במיוחד כאשר פעולת המערכות יכולה להוביל לפגיעה פיזית באנשים, כמו בכלי רכב אוטונומיים, חדרי בקרה במפעלים המערבים חומרים מסוכנים, ובפרט במערכות נשק אוטונומיות שזהו ייעודן.
לכמת את האחריות
עד היום, תחום אחריות האנוש באינטראקציה עם אוטומציה נידון מהצדדים הפילוסופיים, האתיים והמשפטיים בלבד בזמן שניר דואר, דוקטורנט במחלקה להנדסת תעשייה, תחת הנחייתו של פרופ' יואכים מאייר, בוחן אותו לראשונה מתוך זווית ראייה של הנדסה קוגניטיבית. ניר ופרופ' מאייר מפתחים מודלים ומדדים מתמטיים-סטטיסטים המאפשרים לכמת בצורה אובייקטיבית את "אחריות" האדם המפעיל או מפקח על מערכות אוטומטיות מתקדמות. בנוסף לפיתוח תאורטי, הם מבצעים ניסויי מעבדה נרחבים, בהשתתפות עשרות סטודנטים מהמחלקה להנדסת תעשייה, בהם הם בוחנים עד כמה התאוריה שהם פיתחו יכולה לחזות התנהגויות אנושיות בפועל.
המודל התיאורטי לכימות אחריות (ResQu) של אינטראקציה אנושית במערכות אוטומטיות שניר פיתח מתבסס על תורת האינפורמציה. הניתוח מגלה שבפועל במקרים רבים האחריות התורמת של האדם הינה נמוכה, גם כאשר לכאורה מוקצים לאדם תפקידים מרכזיים. לפיכך, המדיניות המקובלת כיום של שמירה על "אדם בחוג", ושימוש בבקרה אנושית משמעותית, הינה מטעה ולמעשה לא יכולה להכווין את קביעת המדיניות על האופן בו נכון לערב בני אדם בתפעול ובקרה של אוטומציה מתקדמת.
"מודל האחריות שלנו יכול לשמש בעת קבלת החלטות לגבי עיצוב המערכת ולסייע לקביעת מדיניות ולהחלטות משפטיות בנוגע לאחריות אנושית באינטראקציה עם מערכות אוטומטיות מתקדמות" מסביר ניר. "הדרישה להשאיר לאדם תפקיד בתפעול או בקרה של מערכת אוטומטית לא מבטיחה שבפועל תהיה לו יכולת תרומה משמעותית. המחקר שלנו מראה שלאדם יש אחריות תורמת רק במקרה שיש לו יכולת מסוימת המשלימה או עולה על זו של המערכת האוטונומית, באמצעות איזשהו יתרון אנושי מובהק או מקור מידע ייחודי אחר שלמערכת הממוחשבת אין".
הניסויים שלנו הראו שכאשר אנשים נעזרים באוטומציה מתקדמת שיש לה יכולת העולה בהרבה על שלהם, הם נוטים להתערב יותר מהנדרש, מבצעים שגיאות, ולמעשה פוגעים ברמת הביצועים המיטבית שיכלה לספק המערכת האוטומטית לולא מעורבותם.
נשאיר אתכם עם שאלה למחשבה: מה תהיה אחריות האדם כשהיתרון האנושי יישחק. עם התפתחות טכנולוגיות AI, המעורבות האנושית המשמעותית במערכות אוטונומיות תלך ותפחת, כמו גם היכולת האנושית לפקח עליהן, ואז, מה יהיה הטעם להכניס לתמונה אדם אם תפקידו העיקרי יהיה רק לחטוף את האשמה במקרה של תקלה?
אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון
מחקר
מחקר חדש של פרופ' שחר ריכטר מציע שימוש בציפוי אורגני לנורות לד
פרופ' שחר ריכטר, ותלמידת המחקר יוליה גוטה מהמחלקה למדע והנדסה של חומרים מהפקולטה להנדסה אוניברסיטת תל אביב, פיתח יחד עם פרופ' עודד שוסיוב ותלמיד המחקר טל בן-שלום מהאוניברסיטה העברית ציפוי אורגני לנורות לד (LED), המבוסס על רכיבי פסולת מתעשיית העץ.
הפיתוח המהפכני יכול להוביל לצפוי הראשון מסוגו שאינו מכיל מתכות ויוזיל לכולנו את עלויות החשמל.
נורות הלד הלבנות עשויות חומר כחול הפולט אור כחול העובר אינטרקציה עם צפוי המכיל חומר זרחני, אינטרקציה זו יוצרת את האור הלבן. הציפוי בו משתמשים היום עשוי מתכות נדירות ויקרות, והן חלק מהסיבה למחירן הגבוה של נורות הלד.
"אנחנו פיתחנו ציפוי אורגני ידידותי לסביבה העשוי תאית, וחומרים פולטי אור אורגנים בתהליך ידידותי לסביבה. התאית, המרכיב המרכזי בדפנות התאים של העץ, נחשבת לאחד החומרים החזקים בטבע ונתן להפיקה אף מפסולת נייר" מסביר פרופ' ריכטר. הציפוי שפיתח פרופ' ריכטר ושותפיו למחקר עשוי חומרים אורגניים בלבד, ובניגוד לציפויים ביולוגיים אחרים הוא עמיד לטמפרטורה, ללחות ולקרינת UV .
בימים אלה הם עובדים על שיפור יעילות הציפוי. "אני יכול לגלות שכבר ניתן רישיון לייצור מסחרי של הנורות החדשות" מציין פרופ' ריכטר.