תחומים:

בחר הכל

משפטים

כללי

הנדסה

חיי הקמפוס

ASV

מערכות קוונטיות

תחבורה חכמה

רכב אוטונומי

קול קורא

מכונת הנשמה

COVID-19

מטא-חומרים...

הנדסת חשמל

הנדסה מכנית

אולטרה-סגול

אולטרה-סגול

RoboBoat

MRI

קטגוריות:

בחר הכל

פרס

ברכות

כנס

מחקר

מחקר בפקולטה

פוקוס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
Remote sensing of waves
AI
Cyber Security
Geophysical and environmental fluid dynamics
exotic mechanics
Environmental implications
environment
drone
Deep learning
CO2 storage
Health
chemical oxidation
Biomimicry
Biomimetics
Biomedical
Bioelectronics
Beetles
groundwater
Hemodynamics and Biomechanics
Radio Physics and Engineering
nanotechnologies
Optics
optical nanosensors
oil and natural gas
nanomaterials
Numerical models
numerical modelling
Nanoelectronics
Nonlinear optics
Molecular Electronics
Nanophotonics
Metamaterials
Mechanical Engineering
Interfacial Phenomena
materials for water
עדשה

מחקר

12.10.2020
לעקם את משולש החשיפה

מאמרו של הדוקטורנט שי אלמלם, התפרסם השבוע בכתב העת היוקרתי ""Optica של ה-OSA בנושא: "תיקון טשטוש הנובע מתנועה באמצעות קידוד מפתח מרחבי-זמני".

  • מחקר
  • הנדסת חשמל

הדוקטורנט שי אלמלם, בהנחיה משותפת של פרופ' עמנואל מרום ז"ל וד"ר רג'א ג'יריס, מבית הספר להנדסת חשמל של הפקולטה להנדסה באוניברסיטת תל אביב , פרסמו השבוע מאמר בכתב העת היוקרתי ""Optica של ה-OSA בנושא: "תיקון טשטוש הנובע מתנועה באמצעות קידוד מפתח מרחבי-זמני".

 

האתגר הגדול

בשנים האחרונות השימוש במצלמות נהיה חלק אינטגרלי מחיי היום-יום וניתן למצוא אותן משולבות בטלפונים ניידים, מחשבים, מערכות אבטחה וכו׳. ישנה הערכה הגורסת כי בעולם יש כיום יותר מצלמות מבני-אדם. כדי לצלם תמונה טובה, דרוש כי עוצמת אור גדולה תגיע לחיישן. כדי להגדיל את עוצמת האור ניתן להגדיל את מפתח העדשה, אך המחיר של הגדלה זו הוא הקטנה של עומק השדה, וכתוצאה מכך טשטוש של עצמים שאינם במישור המוקד (שאינם ב'פוקוס'). פתרון אפשרי אחר הוא להגביר (אלקטרונית) את האות שהגיע לחיישן, אך הגברה זו תוסיף רעש ויזואלי לתמונה. האפשרות השלישית היא להגדיל את זמן הצילום (מכונה גם זמן החשיפה), וכך יגיע יותר אור לחיישן. מאידך, בזמן חשיפה ארוך ייתכן שתתרחש תנועה, בין אם של העצמים אותם אנחנו מצלמים (תמונה 1) ובין אם של המצלמה עצמה (תמונה 2), מה שיגרום למריחה ולירידה באיכות התמונה.  

תמונה 1: מריחה כתוצאה מתנועה של העצם המצולם תוך כדי החשיפה 

 

תמונה 2: מריחה כתוצאה מתנועה של המצלמה תוך כדי החשיפה

 

המפתח הוא באיזון

כדי לצלם תמונה איכותית נדרש לאזן את 'משולש החשיפה' (מפתח, זמן חשיפה והגבר), ואיזון זה הינו אתגר יסודי בצילום. השימוש הרווח במצלמות בימינו מכתיב דרישות מורכבות על התכנון שלהן, כיוון שמצלמות נדרשות להשיג ביצועים מצוינים מחד, ומאידך להיות קטנות וזולות ככל שניתן. בשיטות התכנון המקובלות, דרישות אלו הן דרישות סותרות.

 

פיצוי על הטשטוש

כדי להשיג ביצועי צילום טובים במצלמות קטנות וזולות, ניתן לעקוף את אילוצי משולש החשיפה ע״י צילום תמונות בצורה לא קונבנציונלית, ולאחר מכן ביצוע תיקון בתהליך עיבוד תמונה מתקדם. במאמר שפורסם לאחרונה בכתב העת Optica, שיטת תכנון כזו הודגמה כדי לפצות על טשטוש כתוצאה מתנועה, ע"י קידוד מרחבי-זמני של המריחה בצבעים שונים.

 

במסגרת המחקר בקבוצה, פותחה שיטת תכנון למצלמה הכוללת תכנון משולב של האופטיקה ושל אלגוריתם עיבוד התמונה בתהליך יחיד, מקצה לקצה (End-to-End), ע"י שימוש בכלים של למידה עמוקה (Deep Learning). בשיטה זו, המערכת נבחנת כיחידה אחת, וכלל דרגות החופש (פיזיות- באופטיקה, ודיגיטליות- באלגוריתם העיבוד) מנוצלות בתהליך התכנון כדי להשיג את המטרה הרצויה. שיטה זו הודגמה במאמרים קודמים לפיתוח מצלמת All-in-focus וכן למצלמה שמאפשרת מדידת מרחק מתמונה בודדת (עבודה זו זכתה ב-2018 במקום הראשון בתחרות סטודנטים של ה-OSA שכותרתה הייתה “The Optical System of the Future”).

 

במסגרת המחקר הנוכחי, בוצע תהליך תכנון משולב של העדשה ותהליך רכישת התמונה, והן של תהליך עיבוד התמונה הגולמית, במטרה לבצע תיקון לטשטוש כתוצאה מתנועה. מטרת התכנון היא 'לשתול' בתמונה הגולמית רמזים לנתוני התנועה, מה שיאפשר לבצע בתהליך עיבוד התמונה תיקון של המריחה שנוצרה כתוצאה מהתנועה. הרמזים נשתלים ע"י שני רכיבים אופטיים: לוחית שקופה שמשולבת בעדשה רגילה, ועדשת מיקוד (פוקוס) אלקטרונית. הלוחית מכילה מבנה מיקרומטרי שמתוכנן לייצר תלות בין צבע למיקוד. עדשת המיקוד מתוזמנת כך שתבצע שינוי מיקוד הדרגתי תוך כדי הצילום, וכתוצאה מכך המריחה של עצמים נעים נצבעת בצבעים שונים לאורך התנועה (תמונות 3,4). קידוד הצבעים נותן הכוונה חזקה לאלגוריתם העיבוד על כיוון ומהירות התנועה, מה שמאפשר תיקון של המריחה ושחזור תמונה חדה. השיטה הודגמה באמצעות אבטיפוס שמבוסס על מצלמה מסחרית, ששולבו בה לוחית הפאזה ועדשת המיקוד האלקטרונית. המערכת השיגה שיפור משמועתי בביצועי הצילום יחסית לשיטות קיימות שמתבססות על עיבוד תמונה בלבד (תמונה 5), והן ביחס לשיטות אחרות שמבצעות שינוי באופטיקה בשילוב עם עיבוד מותאם.

תמונה 3: תרשים זרימה של התהליך (התמונה מתוך המאמר)

 

תמונה 4: הדגמה לקידוד תנועה-צבע: צילום של נורית לבנה בתנועה עם המצלמה שפותחה. הקידוד משתנה תוך כדי החשיפה, כך שהנורה הלבנה נקלטת בצבעים שונים לאורך התנועה שלה, וסדר הצבעים והמרחק ביניהם נותן אינדיקציה לכיוון ומהירות התנועה (התמונה מתוך המאמר).

 

תמונה 5: צילומים של תמונה שמסתובבת תוך כדי החשיפה והשוואת ביצועים: משמאל: תוצאת המצלמה שלנו. מימין: צילום במצלמה רגילה וניסיון שחזור של הטשטוש עם אלגוריתם מבוסס למידה עמוקה (התמונה מתוך המאמר).

 

מאחורי העדשה

כאמור, המחקר בוצע ע"י הדוקטורנט שי אלמלם, בהנחיה משותפת של פרופ' עמנואל מרום ז"ל וד"ר רג'א ג'יריס. בצער רב, פרופ' מרום נפטר במהלך העבודה, והמאמר שפורסם מוקדש לזכרו. פרופ' מרום היה ממקימי הפקולטה להנדסה, שימש כדקאן הפקולטה בשנים 1980-1983, ובתפקידו האחרון היה סגן נשיא האוניברסיטה בשנים 1992-1997. לאחר פרישתו המשיך לעסוק במחקר פעיל ולהנחות סטודנטים לתארים מתקדמים, עד יומו האחרון.

 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

 

 

 

קובייה מתכתית

מחקר

22.07.2020
המהוד האופטי הקטן בעולם לקרינה אינפרא-אדומה

ד"ר איתי אפשטיין, יחד עם חוקרים מספרד, ארה"ב, פורטוגל וצרפת, הצליחו לבנות מהוד אופטי אשר מסוגל לדחוס קרינה אינפרא-אדומה לחלל הקטן פי מיליארד מנפחה הרגיל

  • מחקר
  • הנדסת חשמל

בדומה להקטנת גודלם של מעגלים אלקטרוניים, המאפשרים טכנולוגיות כמו מחשבים וסמארטפונים, השאיפה ליצור טכנולוגיה עתידית המבוססת על מעגלים ושבבים אופטיים מונעת גם היא ע"י הצורך במזעור. יחד עם זאת, מזעור זה כרוך באתגרים ובמכשולים חדשים שיש להתגבר עליהם, כמו שליטה והולכה של אור בסקלת הננומטר. לאור זאת, טכניקות חדשות מפותחות כל הזמן אשר מטרתן לדחוס את האור לחללים זעירים במיוחד - קטנים פי מיליונים מאורך הגל של האור ומתחת לגבול הדיפרקציה, שמסמל את הגודל או הנפח הקטן ביותר אליו ניתן לדחוס גלי אור. דבר זה קשה במיוחד בתחום הספקטראלי של קרינה אינפרא-אדומה, מכיוון שהיא מאופיינת ע"י אורכי גל גדולים, בסקלות של עשרות עד מאות מיקרומטרים.

 

גלים פלזמונים בגרפן

גרפן - חומר דו-ממדי הבנוי משכבה אחת של אטומי פחמן - משלב תכונות אופטיות וחשמליות יוצאות דופן. גרפן מסוגל להנחות אור בצורה של "גלים פלזמונים", שהם תנודות של אלקטרונים המצומדות לשדה האלקטרומגנטי של האור. לפלזמונים (יחידת אנרגיה של תנודות בפלזמה) אלו יכולת טבעית לדחוס אור לחללים קטנים מאוד. עם זאת, עד עכשיו ניתן היה ​​לדחוס את הפלזמונים הללו בצורה המוגבלת לסקלות מיקרומטריות, בעוד שיכולתו של האור לבצע אינטראקציה עם חלקיקים קטנים, כמו אטומים ומולקולות, תלויה ביכולת לדחוס אותו לחללים בסקלות הרבה יותר קטנות. סוג זה של דחיסה נחשב בדרך כלל למהוד אופטי.

 

סוג חדש של מהוד אופטי

כעת, במחקר שהוביל ד"ר איתי אפשטיין, איש סגל חדש במחלקה לאלקטרוניקה פיסיקלית בבית הספר להנדסת חשמל בפקולטה להנדסה, אשר בוצע כחלק מעבודת הפוסט-דוקטורט שלו יחד עם חוקרים נוספים מספרד, פורטוגל, צרפת, ברזיל וארה"ב, הצליחו החוקרים לבנות סוג חדש של מהוד אופטי. המהוד, שמבוסס על שילוב של קוביות מתכת בגודל ננומטרי המפוזרות על גבי הגרפן, איפשר לייצר את המהוד האופטי הקטן ביותר שנבנה עד כה לקרינה אינפרא-אדומה, ואשר מבוסס על הפלזמונים בגרפן.

 

בניסוי, החוקרים השתמשו בקוביות מתכתיות בגודל 50 ננומטר בלבד, אשר מפוזרות באופן אקראי על שכבת הגרפן ללא דפוס או כיוון ספציפי. זה איפשר לכל קוביה, ביחד עם הגרפן, לפעול כמהוד אופטי בודד. לאחר מכן הם העבירו אור אינפרא-אדום דרך הדגם ומדדו כיצד הפלזמונים נדחסים לנפח קטן מאוד בין הגרפן והקוביות.

 

מבעיה לפתרון

ד"ר אפשטיין מציין כי "המכשול העיקרי בו נתקלנו בניסוי זה הוא העובדה שאורך הגל של אור אינפרא-אדום גדול מאוד והקוביות קטנות מאוד - בערך פי 200 - כך שקשה מאוד לגרום להם לבצע אינטראקציה זה עם זה". כדי להתגבר על הבעיה הם ניצלו תופעה מיוחדת - כאשר הפלזמונים נדחסו אל המהוד הם יצרו אופן תהודה הנקרא אופן תהודה מגנטי. ד"ר אפשטיין מבהיר: "תכונה ייחודית של אופן תהודה מגנטי מסוג זה היא היכולת לפעול כסוג של אנטנה המגשרת על ההבדל בין הממדים הננומטריים של הקוביה לבין המימדים הגדולים של האור האינפרא-אדום". לפיכך, אופן התהודה איפשר לדחוס את הפלזמונים לנפח הקטן פי מיליארד מהנפח של אור אינפרא-אדום רגיל, דבר שמעולם לא הושג לפני כן. בנוסף, החוקרים גילו שהמהוד משמש גם כסוג חדש של אנטנה ננומטרית שיכולה לפזר אור אינפרא-אדום ביעילות רבה.

 

תוצאות מחקר מבטיחות

לרוב החומרים המולקולריים קיימים מעברים אנרגטיים בספטרום האינפרא-אדום, ומכוון שגישה זו, של דחיסת האור לחללים מאד קטנים, מסוגלת לחזק את השדה האופטי בצורה ניכרת, ניתן להשתמש בה כדי לאתר חומרים מולקולריים, המגיבים לאור אינפרא-אדום. מבחינה זו תוצאות המחקר מבטיחות בתחום של גלאים חדשים לחישה מולקולרית וביולוגית, רפואה, ביוטכנולוגיה, בדיקת מזון ואפילו ביטחון. גלאים אלו יעזרו לאתר חומרים מולקולריים רעילים או מסוכנים, הנמצאים במזון או בציוד הנ"ל.

 

העבודה בוצעה כחלק מעבודת הפוסט-דוקטורט של ד"ר אפשטיין, במכון המחקר ICFO – The Institute of Photonic Sciences, בברצלונה, ספרד, והתפרסמה בירחון המדעי Science.

 

את המאמר המלא ניתן למצוא כאן.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>