EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

25 בדצמבר 2024, 15:00 
אולם 011, בניין כיתות-חשמל 
EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

Electrical Engineering Systems Seminar

 

Speaker: Shahar Zuler

M.Sc. student under the supervision of Dr. Dan Raviv

 

Wednesday, 25th December 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

 

Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

 

Abstract

The ability to map left ventricle (LV) myocardial motion using computed tomography angiography (CTA) is essential to diagnosing cardiovascular conditions and guiding interventional procedures. Due to their inherent locality, conventional neural networks typically have difficulty predicting subtle tangential movements, which considerably lessens the level of precision at which myocardium three-dimensional (3D) mapping can be performed. Using 3D optical flow techniques and Functional Maps (FMs), we present a comprehensive approach to address this problem. FMs are known for their capacity to capture global geometric features, thus providing a fuller understanding of 3D geometry. As an alternative to traditional segmentation-based priors, we employ surface-based two-dimensional (2D) constraints derived from spectral correspondence methods. Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks. By incorporating FMs, we can capture the subtle tangential movements of the myocardium surface precisely, hence significantly improving the accuracy of 3D mapping of the myocardium. The experimental results confirm the effectiveness of this method in enhancing myocardium motion analysis. This approach can contribute to improving cardiovascular diagnosis and treatment.

Our code and additional resources are available at: https://shaharzuler.github.io/CardioSpectrumPage

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>